67 research outputs found

    Brief Report: Is Impaired Classification of Subtle Facial Expressions in Children with Autism Spectrum Disorders Related to Atypical Emotion Category Boundaries?

    Get PDF
    Impairments in recognizing subtle facial expressions, in individuals with autism spectrum disorder (ASD), may relate to difficulties in constructing prototypes of these expressions. Eighteen children with predominantly intellectual low-functioning ASD (LFA, IQ <80) and two control groups (mental and chronological age matched), were assessed for their ability to classify emotional faces, of high, medium and low intensities, as happy or angry. For anger, the LFA group made more errors for lower intensity expressions than the control groups, classifications did not differ for happiness. This is the first study to find that the LFA group made more across-valence errors than controls. These data are consistent with atypical facial expression processing in ASD being associated with differences in the structure of emotion categories

    Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children

    Get PDF
    Sensitivity to the emotions of others provides clear biological advantages. However, in the case of heterospecific relationships, such as that existing between dogs and humans, there are additional challenges since some elements of the expression of emotions are species-specific. Given that faces provide important visual cues for communicating emotional state in both humans and dogs, and that processing of emotions is subject to brain lateralisation, we investigated lateral gaze bias in adult dogs when presented with pictures of expressive human and dog faces. Our analysis revealed clear differences in laterality of eye movements in dogs towards conspecific faces according to the emotional valence of the expressions. Differences were also found towards human faces, but to a lesser extent. For comparative purpose, a similar experiment was also run with 4-year-old children and it was observed that they showed differential processing of facial expressions compared to dogs, suggesting a species-dependent engagement of the right or left hemisphere in processing emotions

    Facial expression training optimises viewing strategy in children and adults

    Get PDF
    This study investigated whether training-related improvements in facial expression categorization are facilitated by spontaneous changes in gaze behaviour in adults and nine-year old children. Four sessions of a self-paced, free-viewing training task required participants to categorize happy, sad and fear expressions with varying intensities. No instructions about eye movements were given. Eye-movements were recorded in the first and fourth training session. New faces were introduced in session four to establish transfer-effects of learning. Adults focused most on the eyes in all sessions and increased expression categorization accuracy after training coincided with a strengthening of this eye-bias in gaze allocation. In children, training-related behavioural improvements coincided with an overall shift in gaze-focus towards the eyes (resulting in more adult-like gaze-distributions) and towards the mouth for happy faces in the second fixation. Gaze-distributions were not influenced by the expression intensity or by the introduction of new faces. It was proposed that training enhanced the use of a uniform, predominantly eyes-biased, gaze strategy in children in order to optimise extraction of relevant cues for discrimination between subtle facial expressions

    Networks of Emotion Concepts

    Get PDF
    The aim of this work was to study the similarity network and hierarchical clustering of Finnish emotion concepts. Native speakers of Finnish evaluated similarity between the 50 most frequently used Finnish words describing emotional experiences. We hypothesized that methods developed within network theory, such as identifying clusters and specific local network structures, can reveal structures that would be difficult to discover using traditional methods such as multidimensional scaling (MDS) and ordinary cluster analysis. The concepts divided into three main clusters, which can be described as negative, positive, and surprise. Negative and positive clusters divided further into meaningful sub-clusters, corresponding to those found in previous studies. Importantly, this method allowed the same concept to be a member in more than one cluster. Our results suggest that studying particular network structures that do not fit into a low-dimensional description can shed additional light on why subjects evaluate certain concepts as similar. To encourage the use of network methods in analyzing similarity data, we provide the analysis software for free use (http://www.becs.tkk.fi/similaritynets/)

    Developmental differences in children’s interpersonal emotion regulation

    Get PDF
    Previous research on interpersonal emotion regulation (ER) in childhood has been rather unsystematic, focusing mainly on children’s prosocial behaviour, and has been conducted in the absence of an integrative emotion theoretical framework. The present research relied on the interpersonal affect classification proposed by Niven, Totterdell, and Holman (2009) to investigate children’s use of different interpersonal ER strategies. The study drew on two samples: 180 parents of children aged between 3 and 8 years reported about a situation where their child was able to change what another person was feeling in order to make them feel better. In addition, 126 children between 3- and 8-years old answered two questions about how they could improve others’ mood. Results from both samples showed age differences in children’s use of interpersonal ER strategies. As expected, ‘affective engagement’ (i.e., focusing on the person or the problem) and ‘cognitive engagement’ (i.e., appraising the situation from a different perspective) were mainly used by 7-8 years-old, whereas ‘attention’ (i.e., distracting and valuing) was most used by 3-4 and 5-6 years-old. ‘Humor’ (i.e., laughing with the target) remained stable across the different age groups. The present research provides more information about the developmental patterns for each specific interpersonal emotion regulation strategy

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants
    corecore